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Why and how one should study a scale-space is 
prescribed by the universal physical law of scale 
invariance, expressed by the so-called Pi-theorem. 
The fact that any image is a physical observable with an 
inner and outer scale bound, necessarily gives rise to a 
‘scale-space representation’, in which a given image is 
represented by a one-dimensional family of images 
representing that image on various levels of inner spatial 
scale. An early vision system is completely ignorant of 
the geometry of its input. Its primary task is to establish 
this geometry at any available scale. The absence of 
geometrical knowledge poses additional constraints on 
the construction of a scale-space, notably linearity, 
spatial shift invariance and isotropy, thereby defining a 
complete hierarchical family of scaled partial differential 
operators: the Gaussian kernel (the lowest order, 
resealing operator) and its linear partial derivatives. 
They enable local image analysis through the detection 
of local differential structure in a robust way, while at the 
same time capturing global features through the extra 
scale degree of freedom. In this paper we show why the 
operations of scaling and differentiation cannot be 
separated. This framework permits us to construct in a 
systematic way multiscale, Cartesian differential 
invariants, i.e. true image descriptors that exhibit 
manifest invariance with respect to a change of Cartesian 
coordinates. The scale-space operators closely resemble 
the receptive field profiles found in mammalian front- 
end visual systems. 
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Over the last few years there has been an increasing 
tendency in the image analysis literature towards a 
multiscale approach. A historical contribution to such 
an approach was the introduction of the pyramid’. 
Though being based on a rather ad hoc method of 
averaging neighbouring pixels, this first model did 
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capture the crucial observation of the inherently multi- 
scale character of image structure. 

For some time there has been discussion on the 
question of how to generate a scale-space, the con- 
tinuous analogue of the pyramid, in a unique way, as 
there seemed to exist no clear way to choose among the 
many possible scale-space filtersz4. One obviously 
needed a set of natural, a priori scale-space constraints. 

A fundamental approach was adopted by 
Koenderink’, Witkins and Yuille and Poggio’, who 
formulated an a priori constraint in the form of a 
causality requirement: no ‘spurious detail’ should be 
generated upon increasing scale. This, together with 
some symmetry constraints, unambiguously established 
the Gaussian kernel (i.e. the Green’s function of the 
isotropic diffusion equation) as the unique scale-space 
filter. Its width CT can be identified with spatial scale. 

One can model an image as a scalar field on a finite- 
dimensional manifold and apply fundamental mathe- 
matical operations, like differentiations, to reveal local 
image structure. There exist many useful and rather 
well-established mathematical disciplines, notably 
differential geometry, tensor calculus, invariants 
theory, all of which have an increasing impact on 
nowadays image structure analysis. 

In this paper we discuss the fundamental concept of 
scaling as well as some natural constraints of a front- 
end visual system, and show that a complete hier- 
archical set of scaled differential operators follows from 
these considerations. The lowest order kernel is the 
isotropic Gaussian. The higher order kernels are the 
scaled Gaussian derivatives, which constitute the 
natural differential operators on a given scale. 

With this set we can study local image geometry to 
any desired order. To this end we will introduce the 
conce t of a local jet of order N, J”‘[L(P)], also called 
N-jet’ defined as the equivalence class of functions L 
which share the same N-truncated Taylor expansion at 
a given point P. In other words, all images in a given N- 
jet are locally indistinguishable modulo higher order 
differences. Such a local N-jet can be represented with 
respect to a Cartesian coordinate system by the set of 
partial derivatives up to Nth order, evaluated at the 
point P, so: 

JN[L(P)] A {Lil 



The lower spatial indices attached to L all have values 
within the range I . . . D, where D is the dimension of 
the image domain, and denote differentiation with 
respect to the associated spatial variable. 

Derivatives of arbitrary order are generally well- 
defined and robust provided they can be calculated on a 
sufficiently high scale (relative to pixel scale and noise 
correlation width), and provided we have a sufficient 
resolution of intensity values (dynamic resolution, 
noise). We will not present a detailed discussion on 
these trade-offs here, but refer to Blom et al.“. In this 
paper we will restrict ourselves to NG 3. 

The approach is valid in D dimensions, whereas 
much of the literature is limited to 1 or 2 
dimensions”‘.“,‘. 

THEORY 

Physical versus mathematical operators 

The only way to obtain structural information about a 
physical scene is to extract observables (i.e. images) 
with the help of some measuring apparatus. We 
inevitably have to face the problem of fixing the proper 
scale, because observables are always characterized by 
an intrinsic, finite scale range. Its lower bound is 
determined by the sampling characteristics of the 
device, whereas the upper bound is limited by the scope 
of the field of view. 

The very fact that an image is a physical observable 
makes it subject to an extra constraint imposed by the 
universal law of scale invariance, which governs all laws 
of physics. There is no such scaling constraint on a 
mathematical, i.e. a dimensionless scalar field, defined 
on a dimensionless manifold, but it is instructive to 
observe how mathematicians alternatively constrain it 
by imposing convenient regularity conditions: a mathe- 
matical function isFpically assumed to be ‘sufficiently 
smooth’, say a C (a)-function on a D-dimensional 
domain R, with N sufficiently large to justify the 
operations performed on it. For a physical observable 
we cannot pose such smoothness constraints. 

Clearly, it makes no sense to define a derivative of a 
sampled image in the strict mathematical sense (this 
would require the existence of an infinitesimal neigh- 
bourhood as well as a smoothness constraint on 
neighbouring image values). One usually circumvents 
this problem by considering neighbouring pixels instead 
of infinitesima1 neighbourhoods in the definition of a 
derivative. A well-known example of this is the Spoint 
Laplacean kernel”. This is, however, a non-robust and 
rather ad hoc solution that crucially relies on imaging 
conditions, like grid size and pixel shape. Using this 
operational Laplacean amounts to the implicit assump- 
tion that the structures of interest have a spatial extent 
close to pixel scale. Moreover, it assumes that the 
structures of this scale are meaningful, which is 
generally not the case (think of pixel-correlated noise 
or dithered images). 

Disregarding the intrinsic dimensionality of an image 
or, in other words, the scaling degree of freedom, is the 
cause of the failure of naively applying differential 
methods in image analysis. Dimensional analysis is a 
well recognized concept in physics, and its precise 
mathematical formulation will be used to argue for the 

necessity of a multiscale approach and to derive the 
unique scale-space operators for arbitrary dimensions 
D>l. 

Basic front-end vision constraints 

Many interpretations of a front-end vision system are 
possible. We assume that its sole task is to establish a 
representation of a given observable in a convenient 
format. The interpretation is left to dedicated postpro- 
cessing routines, which read out the formatted data 
represented by the front-end (cf. the ~sensorium’ in 
Koenderink”). By definition, a front-end vision system 
is assumed to be completely ignorant of any a priori 
geometry of its input. This lack of a priori geometrical 
knowledge argues for an a priori symmetric sampling 
and preprocessing of its input. Hence it is quite natural 
to define a front-end vision system by formulating a set 
of plausible symmetries. We propose the following 
set*: 

linearity: allowing for superposition of input 
stimuli. 
~patiaI shift invariance: implied by the absence of a 
perferred location. 
isotropy: implied by the absence of a preferred 
direction. 
scale invariance: implied by the absence of a 
preferred scale. 

These basic symmetry requirements are rather weak, 
because we do not want the front-end system to commit 
itself to any specific task beyond representation. Note 
that none of these symmetry constraints are strictly 
necessary for the sole purpose of data representation, 
but they do significantly decrease the burden on 
interpreting routines that address the front-end, since 
these will now be refrained from the overhead of 
having to reconcile the data with the symmetries of the 
environment that are known in advance anyway: the 
front-end system will make this a priori knowledge of 
the environment manifest. In this precise sense, the 
front-end postulates will make up for a convenient 
format. 

Scale invariance 

Let F(x,, . . ., x0) be some physical observable, e.g. 
the image luminance as a function of spatial coordin- 
ates, time, etc. From a pure mathematical point of view 
there is no restriction whatsoever on the form of the 
function F. But because we are dealing with a physical 
entity, the requirement of scale invariance imposes a 
restriction on the form of F: only those functions are 
allowed that ‘scale properly’. The precise meaning of 
this statement is expressed by the following law14.15: 

*There may be asymmetries in the external environment the system 
has to operate in, iike gravity, etc., which might argue for a less 
symmetric front-end vision model. On the other hand, this does not 
really limit the usefulness of these symmetries, since they can always 
be broken in a postprocessing stage. In addition, more restrictive 
(usually task-specific) symmetries may be imposed n posten’ori as 
well. 
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Universal law of scale invariance: 

Physical laws must be independent of the choice of 
fundamental parameters. 

This is equivalent to: 

Dimensional analysis: 

A function relating physical observables must be inde- 
pendent of the choice of dimensional units. 

Important are those quantities that do not change 
under the given scalings. These are called dimension- 
less. It is a necessary requirement to be able to express 
a physical relation in a unit free form. Hence, simple 
dimensional analysis will reveal scale invariance. 
Remember, though, that it is the very notion of scale, 
in relation to the law of scale invariance, that justifies 
the method of dimensional analysis. The rigorous way 
of formulating dimensional analysis is through the Pi- 
theorem (for a detailed discussion see 01veri6). 

Inner and outer scale 

An image is just another physical observable, with 
inner scales limited to a finite range determined by the 
resolution of the sampling device (grid size) and by the 
field of view. 

In image analysis, there is a widespread concern with 
discretization effects. Strictly speaking, when we are 
interested in local image structure on the sampling 
device’s inner scale, we are facing an apparent under- 
sampling problem, from which there is only one escape: 
zooming in on the scene or resorting to a higher 
resolution acquisition. 

Once having fixed the inner scale, all smaller scale 
image geometry has been destroyed and can by no 
means be reconstructed. This ‘catastrophical’ destruc- 
tion is of an intrinsically irreversible nature. One 
cannot expect things to be geometrically correct at the 
limiting lower scale boundary, where we will have 
‘spurious detail’. The scales of interest should therefore 
be relatively large compared to the imaging device’s 
sampling width. Local image analysis on these scales 
will then be of a continuous rather than a discrete 
nature (for discretization issues, see also Lindeberg4 

3 
. 

It pays to study the human front-end visual system’ , 
being an astonishingly well performing device, having 
evolved over many millions of years. The front-end 
focuses on scales which are considerably larger than the 
eye’s true inner scale: the scale of a typical rod or cone. 
It is not the output of individual rods and cones that is 
transferred, but only a weighted sum over typically 
several hundreds of them, making up a receptive field 
(RF). The profile of such a RF takes care of the small- 
scale ‘spurious detail’ generated by the individual rods 
and cones by scaling up to a larger inner scale in a very 
specific way. Only these larger scales are subject to 
further analysis. Indeed, numerous physiological 
measurements’8~‘y support the theory that RF profiles 
can be modelled by Gaussian filters of various widths or 
their partial derivatives2’, which, as we will prove, 
precisely turns out to provide a complete solution to 
our front-end requirements. 

We also often encounter problems related to the 
device’s limited field of view. Finiteness of the image 
domain poses restrictions on the largest inner scales 

that are presented in each point of the image, depend- 
ing on its position relative to the boundary. The further 
away from the nearest boundary, the larger the largest 
scale that is locally represented. On the boundary itself 
there is no scale information left. Reliable local 
geometry on a given spatial scale can only be found a 
certain minimal distance proportional to that scale 
away from the boundaries. The boundary problem as 
such, however, is clearly a scale-independent problem, 
similar on all scales, and consists of formulating the 
trade-off between the (scale-independent) propor- 
tionality constant and accuracy together with a rigorous 
accuracy quantification. 

We will not give a rigorous solution for this notorious 
boundary problem, but merely give a qualitative 
indication of how to deal with it. To this end, we may 
resort to the physiology of our own front-end. Here, 
multiple scaling is essentially achieved already at the 
acquisition stage (due to the many RF sizes), rather 
than by a postprocessing of a fixed-scale sampled image 
(the output of individual rods and cones is ignored as 
such). Since RF’s never overlap with the ‘boundary’, 
the boundary problem simply does not arise in our 
visual system. In this operational sense the boundary is 
non-physical. 

These simple though important scale observations 
should suffice to support the claim that a multiscale 
description of image structure is an indisputable neces- 
sity in front-end image analysis. 

We will introduce a continuous scale parameter u to 
account for the spatial scaling freedom. It has the 
dimension of a length and is used to define the notion 
of an ‘immediate neighbourhood’ of a point P on scale 
c as the ‘fuzzy’ set of points within a sphere of radius 
r(o) L-KU centred at P, i.e. the smallest spatial 
‘volume’ (a length in lD, an area in 2D) within which 
the image structure at that scale varies ‘neither too 
much nor too little’. 

Usually, of course, if u is larger than the pixel size, 
the image structure does vary significantly over a 
distance (7, because of irrelevant small scale details. So 
then u cannot denote inner scale. To reveal the ‘pure’ 
r-scale structure of the image, we have to suppress 
those irrelevant details. This is most easily done in 
the Fourier domain by suppressing ‘high’ spatial 
frequences: when interested in an inner scale of order 
(T we need a cut off frequency of order O(C) = l/a. 
The question then arises of how to do the cut off. 
Danielsson and Seger2’ use ‘constant plateau’ filters, 
but they use the presumption that the sampled signal is 
bandlimited and ignore the scale degree of freedom. 
From our operational point of view, bandlimitedness is 
irrelevant and without this presumption, as Witkins 
and Koenderink’ showed, there is essentially only one 
sensible way to do it. Their derivation relies on an 
assumption that can be phrased as ‘prohibition of 
spurious detail’, the interpretation of which has led to 
some confusion in the literature. We will not use this 
argument, but show that the simple front-end symmet- 
ries we proposed have exactly the same consequences, 
and we will emphasize on how they may set the stage 
for local image analysis in D dimensions. 

Natural scaling operator in scale-space 

In this section we will derive the unique scaling strategy 
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for D-dimensional images (D > l), using its semigroup 
nature in combination with the front-end vision 
symmetries. 

Linear shift invariance implies that a resealed image 
must be a convolution of the original image by some 
kernel G(x; cr)*, so: 

L(x;(~)={L~,*G(.;a)}(x;a) (2) 

It is especially attractive to consider this property in the 
Fourier domain, in which the kernel becomes diagonal: 
(2) then becomes an algebraic relation: 

ge(o; a) = ~,,(o)%(o; V) (3) 

The Pi theorem states that because of conventional 
scale invariance there are only two independent dimen- 
sionless variables in this case. We may take these to be 
% = Z/5!” and fi gf r o. Let us therefore define: 

Natural frequency (spatial) coordinates: 

Natural frequency (spatial) coordinates are defined as 
the dimensionless numbers a(X) associated with the 
frequency (spatial) coordinates w(x) at scale-space 
level u> 0 through: 

R=oo 
i 

X = r respectively 
1 

(4) 
CT 

According to the Pi theorem we may thus write the 
kernel %(o; C) as a function of R: 

%(o; C7) =%/&-f%(n) (5) 

For a scalar function, spatial isotropy implies that % 
depends only on the magnitude (Euclidean length) of 
the vector R: 

%(a) =%(6?) (6) 

with LnEf m. 
Let us choose CT to be such that for fixed w the 

hypothetical zero-scale limit u & 0 will leave the initial 
image unscaled, so: 

%(fI)+l asa J, 0 (7) 

This means that we include the identity as a limiting, 
zero-scale kernel. 

Also, we require the infinite-scale limit u+ ~0 to 
give us a complete spatial averaging of the initial image: 

%(LR) J, 0 as fi+ cQ (8) 

Performing several resealings in succession should be 
consistent with performing a single, effective resealing. 
More specifically, if u ,, r2 are the scale parameters 
associated with two resealings %(n,), %(a,) respec- 
tively, then the concatenation of these should be a 
resealing %(a,) corresponding to an effective scale 
parameter u3 = u2@ u,, in which the additive 
operator ‘CD’ relates the effective scale parameter u3 
to the parameters u,, u2. It is important to note that 

*The notation for x and o is legitimate, orlce having chosen 
an arbitrary, fiducial origin for reference. 

~0110 no julylaugust 

‘0’ not with familiar 
operator All is by is 
the {R:; constitutes commutative 
isomorphic the semigroup image 

Semigroup 

Vu,, u3d~fu28 

Associativity: 

o?, a3@(az@(+,) ((+3@(+2)@(+, 

element: 

uQu”=u~0u=u 

Vu,, ui@u2=uz0u, 

consistency that is one-to-one 
r(u) manifests mathe- 

by existence an {~(a), 
= Ri; i.e. one-to-one between 

two preserving semigroup 

r(u)oy(C (9) 

isomorphism a strong on 
form the kernels. 

will derive explicit for 
semigroup 0. dimensional 
(manifest invariance), allowable 
sation u be i.e. must the 

u -AuP some parameters 
> and # Without of we put 
= since is a factor (9) 

be to choice units. any 
reparametrisation the u be 

by automorphism 

g:{R,:;@}+{R,+; 

Its is by: 

Y-‘:{Ro+; (II) 

we that addition to ; 
then following holds (9)): 

= (C?u+PP)) 

Note, that still sense the 
case + for (10) (11) 

themselves no It easy see this 
case to singular 

semigroups max} {Rl; defined 

u,0u2d~fmax(u1ru2) (13) 

u, u*) uz Rz 

respectively, emerge limiting from 
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regular monotonic semigroup defined by: 

C,S(T2dAfVg:,+,; (15) 

We stress the fact that the null elements of these 
semigroups arise from non-physical limiting proce- 
dures: for p < 0 we have u0 = CQ, whereas for p > 0 we 
have u() = 0. Note that we have already decided on the 
null element (TV = 0 by our limiting requirement (7), 
hence only positive p-values will be of interest ot us*. 

We now turn to the derivation of scale-space kernels 
compatible with (12). It is convenient to consider the 
frequency representation; if we define: 

%(cn) gf+l (fiP) (16) 

we get from (12): 

(17) 

The general solution to this constraint is a normalized 
exponential function: 

4 (fl) = exp (aa) (18) 

or: 

%(a) = exp(afY) (19) 

in which (Y is an arbitrary, negative constant (see (8)), 
whose absolute value can be absorbed into the defini- 
tion of the scale parameter. 

For the limiting case we have ($(a) = lim,, m 
%(a”), i.e. %(O) if O<lR<l and %(m) if R>l. 
Together wit& the limiting conditions (7) and (8) (and 
taking S(1) = limo t1 %(a) for definiteness), we thus 
find the following idempotent kernel: 

in which xl is the indicator function defined by: 

x,(x) Ef 1 1 ifxEI 

0 ifxei 

(20) 

(21) 

In dimensionful coordinates this becomes: 

s’(o; a) =x[o,l/o](4 (22) 

i.e. an ideal low-pass filter with cut-off frequency w = 
l/g. In his article, Mallat proposes such an idempotent 
semigroup requirement as a starting point for a so- 
called ‘multiresolution approximation’h; the operator 
which approximates a given signal at a resolution u is a 
linear projection, satisfying (9) and (13). 

The general, regular case comprises a so-called 
(strongly) continuous semigroup of operators for each 
value of p, as opposed to the idempotent semigroup 
(22): 

%(w; a) = exp(cucrPWP) (23) 

*This is not a restriction: a reflection p t) -p merely amounts to an 
interchange of the complementary concepts of scale and resolution, 
i.e. inverse scale. The reader may verify that by expressing all 
physical requirements in terms of resolution will yield the same 
result. 

To single out a unique scale-space kernel, we need a 
final constraint on the parameter p. For a consistent 
interpretation of %(a) as a spatial resealing it is natural 
to impose the condition of separability in D > 1 dimen- 
sions: 

%(fq = 1”1 %(a;) (24) 
I= I 

in which R; is given by the magnitude of the projection 
vector (a.~?~) gi. This condition states that an isotropic 
resealing can be obtained either directly through %(a) 
or through a concatenation of resealings %(a;) by the 
same amount in each of the independent spatial 
directions e,, i = 1 . . . D separately. Indeed, only in 
this way we can think of u as a natural length unit in an 
isotropic space. The separability requirement fixes 
p=2, so s$fcr2, not (T itself, is the ‘additive’ 
parameter: 

(T@G =V&%? (25) 

Note that the idempotent kernel (20) is not separable. 
A convenient choice for (Y is obtained by letting scale 
coincide with Gaussian width in the spatial domain, so 
that (Y = -l/2. 

So we have finally established the unique scale-space 
kernel. In the Fourier domain it is given by: 

%(a) = exp - i R2 
( ! 

or. in dimensionful coordinates: 

%(w; g)=exp(-iu2w2) 

In the spatial domain 
convolution kernel: 

(27) 

it is given by the normalized 

(28) 

Note that in the spatial domain the Gaussian kernel 
G(x; V) has a scale dependent amplitude. It has the 
dimension of an inverse D-dimensional volume: we 
may write it as a product of an explicit volume factor 
and a dimensionless, scaled Gaussian: 

1 
G(x; u) = - 

V(u) 
G(X) 

with: 

G(X)=& exp(-:x2) 
r 

(30) 

(29) 

Therefore: 

d?YG(X)=d%G(x;cr) 

is a scale invariant measure. 

(31) 

The prefix semi in ‘semigroup’ expresses the intrinsi- 
cally irreversible nature of resealing. Put differently, 
resealing gives rise to irreversible catastrophes in the 
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topological structure of the original image. In ‘forward 
direction’, i.e. when increasing scale, there are no 
‘acausal’ bifurcations (no creation of spurious detail). 

It is important to stress that filtering a given image 
with G(x; g) does not yield an image with an inner 
scale (T, but with an inner scale u~(T~, if u. is the 
inner scale of the original image. Each layer L(x; a) 
in scale-space can in turn be regarded as an initial 
image with an inner scale equal to crOao, and it is 
only when u 9 co that the inner scale of L(x; o) 
approximately equals (T. This observation is especially 
important if one is interested in scales only slightly 
larger than one pixel, for we can at most associate some 
‘effective’ inner scale (T(, with the originally sampled 
image, but we cannot expect the scale-space require- 
ments to be nicely fulfilled near pixel scale4. 

Having defined natural length units it seems rather 
trivial to remark that we now have a natural distance 
measure for the separation of two points X, and X2 on 
a given level V: 

AX~f~fX2-X, I( (32) 

Note its singularity at the highest (fictitious) resolution 
u = 0. When viewed with an infinite resolution, two 
distinct points are always ‘infinitely’ far apart, since 
there can be an arbitrarily large amount of structure 
inbetween. 

Significant changes due to resealing will occur only 
when we increase scale by an order of magnitude rather 
than by some absolute amount. Hence it is more 
natural to reparametrize our scale parameter, thus 
removing the artificial singularity at D = 0: 

Natural scale parameter: 

A natural, dimensionless scale parameter r is obtained 
by the following reparametrization of CT: 

u=Eexp{T} or r=ln{uIE} rE(--,+m) (33) 

Note that we are forced to introduce, on dimensional 
grounds, a ‘hidden scale’ E, which carries the dimen- 
sion of a length. It is a property of the image, not of the 
universal scale-space kernel. An intrinsic scale inherent 
to any imaging device that presents itself is the 
sampling width or pixel width. Now we have a 
dimensionless scale parameter 7 that indicates in a 
continuous manner the order of magnitude of scale 
relative to E and that can take on, at least in theory, 
any real value. If we take E to be the sampling width, 
then r= 0 corresponds to a resolution, where the 
width of the blurring kernel is of the same order of 
magnitude as the pixel width E, i.e. the inner scale of 
the original image. This sets a practical lower limit to 
the kernel widths, at which discretization effects will 
start to contribute to a significant degree. The range 
r E (-@J, 0) corresponds to subpixel scales that are 
not represented in the image and in which all structure 
has been averaged out. When building up a scale-space 
it is most natural to use an equidistant sampling of 7, 
because it is this parameter that precisely formalizes the 
physical notion of scale. An equidistant sampling of 
absolute scale u would violate scale-invariance. 

In this section we have derived the unique scalar 
scale-space kernel that satisfies all our front-end vision 

symmetries, as well as some additional constraints, 
noticeably the concatenation or semigroup requirement 
(9) and the separability condition (24). But it is 
important to stress that the very assumption that it has 
to be a scalar subject to these scaling properties has 
been explicitly added by our desire to find a filter that 
merely scales its input, but is not part of our funda- 
mental front-end vision requirements. Indeed, it is only 
by virtue of these extra constraints that we were able to 
single out the Gaussian as the unique solution. 

In the next section we show that the Gaussian scale- 
space kernel is merely the lowest order member of a 
complete, hierarchically ordered family of scale-space 
filters, all of which are compatible with our front-end 
vision requirements. 

Complete hierarchical family of higher order 
operators 

Although in principle the one-parameter Gaussian 
kernel is all one needs to generate a scale-space, it is 
highly insufficient for a complete, local description of 
image structure. In fact, this filter is the physical 
counterpart of the trivial mathematical identity oper- 
ator in the sense that it extracts a scaled copy of a given 
input, representing the same scene merely on a 
different inner scale. 

In this section we show that the front-end vision 
requirements set admit many more scale-space opera- 
tions beyond mere scaling. We derive a complete, 
hierarchically ordered family of n-th order tensorial 
scale-space filters {y,, ;,,(u)}~=~, (in both spatial and 
Fourier representation), and discuss their role in front- 
end image analysis. The previously established Gaus- 
sian scale-space kernel naturally fits into this family as 
just the zeroth order, scalar member. 

Since the kernels are diagonal in the Fourier domain, 
it is easiest to consider their Fourier representations. It 
is a common misconception to think that rotational 
invariance of the kernels implies that they only depend 
on the length 11011 of the vector o. This only holds 
for scalar kernels. It is easy to construct other, tensorial 
kernels within the isotropy constraint. In fact, any 
tensorial kernel must be proportional to a tensor 
product containing n factors o, with y1= 0, 1, 2.. ., 
since o is the only independent vector available. The 
proportionality constant must be a scalar. Putting in a 
scalar multiplier %(o; a) to account for proper scale 
fixing we can formulate the following claim: 

Claim 1 A complete, hierarchically ordered family of 
multiplicative scale-space kernels is given in the Fourier 
representation by the set: 

{%i ,,,, i,,(“;u)=ioi,.. .iw;,,%(m;U)}:=,j (34) 

Alternatively, in the spatial representation, by the set of 
convolution filters: 

{Gi I... r,,ku)=~; ,.,. i,,G(w%=o (35) 

Note that the zeroth order kernel G is the only 
scalar kernel. All higher order kernels are tensorial 
quantities. For example, the first order kernel, i.e. the 
gradient, is a vector. 

The proof of this claim is given below, where we 
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show that this cartesian family is sufficient for a degree of freedom. Thus is is also a minimal set. The 
complete determination of local image structure. Con- 
sider a given image L(x; U) at a fixed scale. If we are 

zeroth order member of the Cartesian family represents 

interested in the geometrical structure of this image in 
the scaled identity operator, the higher order members 

the neighbourhood of some fixed point x E RD we may 
constitute the physical, scaled counterpart of a 

consider its Taylor approximation up to a sufficient 
complete family of mathematical linear differential 

order N: 
operators. In Figure 1 the spatial profiles of a number 
of operators are shown. 

Note that a scaled image L( . ; g) ef Lo * G( . ; u) is a 
smooth function for all u > 0, no matter how ‘dirty’ the 
initial condition Lo may be (within certain very weak 
restrictions). Digitized images are, by the very fact of 
being digitized, always ‘dirty’ in the differential 
geometric sense (even in the absence of noise). In 
theory, La may even be everywhere discontinuous. 
Scaled differentiation, as opposed to ordinary (‘un- 
scaled’) differentiation, is well-posed by nature. Note 
the following identity: 

Li ,.., i,(x;(+)=Lo*Gi,...i,(x;(+) (37) 

In other words, we have obtained the following 
important result: 

Result 1 To obtain the Cartesian partial derivatives of 
order n of a resealed image L(x; cr.) one only needs to 
convolve the original image Lo(x) with the correspond- 
ing partial derivatives of the zeroth-order Gaussian 
G(x; o). 

The calculation of derivatives is most easily done in 
the Fourier domain, in which the filters are diagonal: 

Li,..i,=~-l[~O~i ,... inI (38) 

Since (36) represents the image’s local geometry at x 
and at scale u up to any desired order of precision N, 
we have proven the completeness of the constructed 
Cartesian kernel family. Each essential kernel compo- 
nent in the family corresponds to an independent 

An alternative, but equivalent way of looking at the 
completeness of this set of filters has been given by 
J. Koenderink and A. Van Doorn, who took the isotropic 
diffusion equation as a fundamental starting point for 
the derivation of the complete family of scale-space 
filters or local neighbourhood operators’3*20, since this 
equation uniquely prohibits the generation of ‘spurious 
detail’ in scale-space’. 

We end this section by noting that, although in theory 
nth order derivatives of a scaled image are all well- 
defined, there is only one operational way of calculat- 
ing them, viz, by a convolution of a lower scale image 
with their corresponding tensor components Gi, i,, 
(x; a) (cf. (37)). This brings us to another important 
result: 

Result 2 The operations of scaling and differentiation 
are intrinsically related. 

Because of the one-to-one correspondence between 
the Gaussian kernels yi, ,, ,i,(~) (on a fixed scale: 
‘horizontal image structure’) and the Cartesian partial 
differential operators, it is straightforward to invoke 
the powerful machinery of well-established mathe- 
matical disciplines, like differential geometry, tensor 
calculus and invariants theory in a robust way. This 
enables us to study the visual system as a ‘geometry 
engine’22. 

Differential invariants in scale-space 

Once we have calculated the N-jet, we are provided 
with all partial derivatives of the image up to and 
including Nth order. However, one such derivative, L, 
say, does not represent any geometrically meaningful 
property, since the choice of the coordinate axes is 
completely arbitrary. If we restrict ourselves to an 
orthonormal basis, we still have the possibility of 

Figure I. Some Gaussian derivative profiles: G,, G,, and GXYY 
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rotating a given coordinate frame over any angle. 
Clearly, such a choice does not have anything to do 
with the image. On the other hand, it is also clear that 
any property that is invariant under such a coordinate 
transformation, must be connected to the image ‘itself 
and therefore can be given a geometric interpretation. 
The reverse is also true: every image property can be 
expressed through an invariant function (or ‘invariant’, 
in short). This shows that there is an intimate relation 
between invariants theory and differential geometry. 

Although it is possible to give a coordinate-free 
description of image geometry in principle, we do need 
coordinates in actual calculations. To this end we 
simply choose any allowable coordinate system, but at 
the same time assure that the functions of interest are 
independent of that particular choice. Note that the 
term ‘invariant’ always implies the existence of a group 
of allowable transformations. In our case this is a rather 
‘minimal’ group, viz. the product group of SO(D), the 
special orthogonal group of all rotations in D dimen- 
sions (sometimes extended to 0 (D), the fulf ortho- 
gonal group, by admitting reflections) and T(D), the 
translation group. This is a very basic group, which we 
believe is especially important in medical imaging. 

Those special combinations of image derivatives that 
exhibit such an invariance under Cartesian coordinate 
transformations are called Cartesian differential 
invariants. To get a basic understanding of the theory of 
Cartesian invariants, it is necessar to understand the 
basics of Cartesian tensor calculus2 Y . In this section we 
briefly outline how to construct functions describing 
true image properties. 

It turns out that we can in fact construct an infinite 
number of invariants in each point of the image, but we 
argue that there is only a small number of independent 
ones among these. This is to say that, to a given order 
N, we can build any geometrically meaningful quantity 
as a function of those (typically very few) independent 
or irreducible invariants. 

Manifest invariant index notation 
It is clear that we cannot form an invariant out of a 
single derivative like L,, whose value always crucially 
relies on the choice of the x-axis and thus varies among 
coordinate systems. It is the subject of tensor calculus 
to describe the transformation behaviour of quantities 
like L,, called tensor components. A ‘closed set’ of 
tensor components, although given with respect to 
some arbitrarily chosen coordinate system, does 
however constitute a coordinate independent object, 
called a tensor. The meaning of the word ‘closed’ in this 
context is that, after a change of coordinates, each 
tensor component acquires a new value that can be 
expressed as some function of the old tensor compo- 
nents. This function only depends on the transforma- 
tion parameters involved, i.e. a set of rotation angles 
and translation components (such a smoothly para- 
metrized group of transformations is called a Lie 
group ‘e). For example, in 2D the partial derivative L, 
changes, after a rotation over an angle (Y, according to 
the following rule: 

L,,=cosaL,+sinaL, (39) 

This shows that L, cannot be the single component of a 
tensor. We should at least add the component L, to it. 

Indeed, this suffices to obtain a 2-component tensor 
{L,, LY} , since these two components do transform in a 
closed way. Their transformations can be written in 
matrix form: 

L,, 
i I( cosff sina L, 

L,,, = -sin LY I( 1 cosff LY 
(40) 

It is clear that also the coordinates {x, y}, taken as a 
pair relative to some fixed origin, constitute a tensor. 
Let Rij stand for the (i, j)th element of the transforma- 
tion matrix, then the abovementioned transformation 
can be conveniently written in condensed form as: 

L:= RiiL, (41) 

Because Li has only one free index it is called a 
l-tensor or vector. But we can also consider tensors 
with more free indices (n-tensors). An example of a 
2-tensor is the Hessian, i.e. the set of all second order 
partial derivatives: its transformation is given by: 

Ll.1~ RikRjtLkt (42) 

It has exactly three essential components, viz. L,,, 
Lx, = Lyx, L,,. This means that because of the 
symmetry of the tensor, we cannot choose all its 
components independently. 

By now it may be obvious that all partial derivatives 
of a given order n form the components of an n-tensor. 
For each of its free indices its transformation law 
contains a transformation matrix with one free and one 
contracted index: 

G,...;,l= R,,j, . . Ri,vj,,Ljl. .j,, 

These derivative tensors share the additional property 
of being symmetric, i.e. we can freely inter-change 
indices without any effect, e.g. Li, = Lj,. Thus there is 
a significant reduction of essential components. 

Of great importance are the following two constant 
tensors: the symmetric Kronecker tensor Stj, which is 
always a 2-tensor, and the antisymmetric Levi-Civita 

tensor &i,, ,in7 which is a D-tensor in D dimensions. 
These tensors have invariant components, independent 
of the choice of the coordinate axes (this property 
makes them well-defined). They are defined as follows: 

6ij = 

i 

1 ifi=i 
and 

0 otherwise 

1 if (iI . . io) is even 

Fi,...in= 

i 

-1 if(i,. .i,)isodd (44) 

0 otherwise 

When including reflections into the transformation 
group, the .+‘tensor’ is not a true tensor in the above 
sense anymore. Its significance still remains as a so 
called relative or pseudo-tensor. Its transformation law 
is then slightly modified so as to render its components 
invariant again: 

I 
&i,...in zf (det R))’ Ri,,, . . . Ri,,joej ,,,, jD = 

&i,...rn with det R = *l (45) 
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Once we understand the transformation behaviour of 
the derivatives, we can try and combine them into 
(absolute or pseudo-) invariant combinations. This is, 
in fact, very easy. Given a set of tensors, the way to 
form an invariant is by means of full contractions and 
alternations of indices in a tensor product. A contrac- 
tion is a procedure that pairwise reduces the number of 
free indices in a tensor by performing a restricted 
summation over them. More precisely, a contraction 
of i, j in L, by definition yields Lii = LiiSi, (this 
contraction is also referred to as the trace of Lii). 

An alternation of D tensor indices is defined as a full 
contraction of these indices onto the D indices of the 
E-tensor as, for example, (in 2D) in: 

E,jLiLkLjk=(L:-Li) L,,+L,L,(L,,-L,,) (46) 

Of course, functions of several invariants are them- 
selves invariants. 

If we consider reflections as well as rotations (after 
all, these also respect orthonormality of the coordinate 
basis), then the E-tensor becomes a relative tensor and 
invariants containing an odd number of these become 
relative invariants, i.e. quantities that are invariant up 
to a possible minus sign (which shows up only when the 
orientation of the coordinate basis is reversed). In fact, 
we Can always write a relative invariant using exactly 
one &-factor. This follows from the fact that any tensor 
product of an even number of E-tensors can be written 
in terms of a-tensors. In 2D: 

EijEk[= dik6j[- Si[Sjk (47) 

Similar relations hold in arbitrary dimensions. 
Relative invariants are related to oriented geome- 

trical objects. We will often speak of invariants, but 
silently admit relative invariants, too. The term abso- 
lute invariant is then used to explicitly exclude relative 
ones. 

Gauge coordinates 
In the index notation one refrains from choosing any 
particular coordinate frame. The invariance of a func- 
tion then manifests itself through a full contraction of 
indices in the tensor products that make up the 
function. For this reason we speak of manifest invari- 
ance when using this notation. 

Another way of forming manifest invariants is by 
singling out one particular, geometrically meaningful 
coordinate frame and using directional derivatives 
along its axes. There are several ways to set up such a 
coordinate frame. One useful way is to require, in each 
point of the image separately, one axis to coincide with 
the image gradient direction (called the w-axis hence- 
forth). The other axis (v-axis) is then automatically 
directed tangentially along the isophote. By its very 
definition, L, vanishes identically. This is precisely the 
motivation for this particular gauge. Because of the 
rotation freedom, this kind of requirement is always 
allowed, provided the image gradient does not vanish*. 

*The (v, w)-gauge is ill-defined in points with a vanishing gradient, 
but these points form a countable set, at least in generic images, 
images that are topologically stable against local distortions. Blurring 
a nontrivial image to a certain level of resolution always yields a 
generic image (which may, however, become obscured in a computer 
implementation by truncations due to the finite precision of L- 
values). 

We call such a requirement a gauge condition, and the 
resulting coordinates gauge coordinates. It should 
always be checked whether a gauge condition is 
admissible, i.e. realizable through a suitable transfor- 
mation provided by the transformation group at hand. 

The directional derivative operators applied to 
the image will yield invariants. Invariance becomes 
manifest by writing differential invariants using these 
invariant differential operators. 

To illustrate the use of differential geometry and at 
the same time show the power of gauge coordinates 
that are tuned to a particular problem, let us derive an 
expression for the isophote+ curvature K (cf. Clark24). 
The meaning of curvature of a planar curve may be 
intuitively clear; it is a measure for the local deviation 
from its tangent line25. A useful definition is the 
following one: put a coordinate frame with its origin in 
the point P of interest on the curve. The x-axis should 
be tangent to the curve. The curve can then locally be 
described by a function y(x) on an open interval around 
x = 0. In this system the curvature in the origin is 
defined as the second derivative y”(0). So in the (v, w)- 
system centred at P we have, by definition, K = w”(O), 
in which w(v) denotes the function describing the 
isophote locally near P(v =O, w = 0). Now the 
isophote passing through the point P is implicitly given 
by the equation L = Lp. Taking first and second 
implicit derivatives of this equation with respect to v 
yields: 

L,+ L,w’ =0 and 

L,,,+2L,,w’+ L WWw’2+L,w”=0 (48) 

In P we have, by our suitable choice of gauge..fL,(0) = 
0, hence also w’(0) = 0. So in P we have K = w”(0) = 
-L,,IL,. In a similar way, one may proof that the 
flow line curvature ,u, i.e. the curvature of the integral 
curves of the gradient vector field (the orthogonal 
trajectories of the isophotes), is given by the formula 
,U = - L,,IL,. So we have the following result: 

L K=-2 L 

L, 
and p=--y 

w 

Because these invariants are closely related to simple 
isophote properties, they look simplest when written in 
this particular gauge. 

It may come as a surprise to learn that, although we 
have calculated the isophote curvature in a simplifying 
coordinate system, it takes hardly any effort to arrive at 
the general expression in arbitrary coordinate systems. 
The method goes as follows: write down an invariant in 
manifest index notation that reduces to the simplified 
expression evaluated in gauge coordinates (simply 
guessing in combination with a modest amount of 
foresight usually does the trick in one go). By invari- 
ance, the two expressions are guaranteed to represent 
the same geometrical property. The following index 
notation for K and p (49) can be easily justified this 
way: 

K= 
Li Eij Ljk &klLI LiEijLjksklLI 

(Ln Ln)3’2 
and p = (LmL,)“f2 (50) 

‘An isophote is a contour of constant image values. 
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To see how this works, consider the isophote curvature 
expression in (50). is the third 
of the gradient LL = (L, L,J”?, while 
its numerator can be translated from index into gauge 
notation as follows: 

KLz.= LI&iiL,k&kl (arbitrary system) = 

-L,.,. LF (gauge system) (51) 

(the last equality follows from L,, = 0, F,,, = 
-F,,,= 1 and F,.,.= F,~=O, so that the onlv non- 
trivial term is the one with indices i = I= w and 
j= k = v). Similar arguments hold for ,u in (50). 
Evaluating the contractions in some Cartesian coordi- 
nate system will give us the explicit formulas for K and 
p in (50): 

(52) K= 

2L,L,L,,- LZL,,,- L;L,, 

(LZ + L;)“’ 

lu= 
(LSL?) L,,+LxL,(L,,-L,,) 

(L; + L;)“2 
(53) 

It is clear that this explicit notation obscures the 
Cartesian invariance property and can become very 
cumbersome when there are many contractions to be 
performed. 

Another example of a manifest invariant is given by 
the well-known Laplacean: 

AL=L,,=L ,,,, +L,,,,,=L ,,,, c-KLw. (54) 

in which we have used the expression for isophote 
curvature (49). This example shows that, in general, 
invariants can be interrelated. More specifically, the 
(v, w)-gauge nicely reveals the shortcomings of edge 
detection methods based on Laplacean zero crossings 
often encountered in the literatureZh.“. The term L,.,,. 
is the second order image derivative along the gradient 
direction, i.e. normal to the isophote. If we define an 
edge as the locus of points of maximum gradient 
magnitude, which seems a quite natural choice, then 
the zero crossings of AL can only accurately describe 
edges if the isophotes are sufficiently straight, so that 
the curvature term can be ignored. It is well-known that 
this condition ceases to hold near corners and this is 
one deficiency of this zero crossings method. Another 
deficiency is the detection of phantom etige.y”, i.e. non- 
edge points detected by this zero crossings method. 
Even if the isophotes are straight, the L,,.,, zero 
crossings detect not only local maxima of L,, (true 
edges), but also local minima, which are the least likely 
candidate edge-points of all. 

Complete sets of differential invariants 
It may be evident that we can construct an infinite 
number of invariants from any finite set of tensors by 
means of tensor multiplications and contractions. But it 
is also clear that the N-jet in a given point only has a 
finite number of independent degrees of freedom. For 
example, in 2 dimensions local image structure up to 
second order is completely determined by five indepen- 
dent 2-jet components, which is 1 less than the number 
of essential components because of the gauge degree of 

freedom. In the (v, w)-gauge in which L,= 0, these 
correspond to the set {L, L,, L ,.,,, L,,, L,,}. 
Therefore, we might foresee the existence of a finite 
number of so called irreducible polynomial invariants, 
i.e. a set of basic polynomial invariants in terms of 
which all other invariants can be expressed. However 
plausible this argument may seem the proof of it in the 
general case is far from trivial. A proof of existence was 
established by Hilbert, although the mathematical 
literature does not seem to provide an algorithm for the 
actual construction of such an irreducible set. In the 
simple case of the 2-jet, however, such an irreducible 
set can readily be givenTx. ln 2D: 

Y={L, L,L,~ LiL,iLj,Lf,,L,,L,,} (55) 

An example of reducibility is given by the following 
identity: 

dwhich can be verified most easily in the (p, q)-gauge, 
defined by the gauge condition L,,,, = 0. i.e. the 
coordinate system in which the Hessian matrix of all 
second order derivatives is diagonal. This gauge is 
admissible, since it can always be realized by a suitable 
rotation. Because of invariance, this reducibility pro- 
perty holds in arbitrary coordinate systems. 

In the next section we will take one or two examples 
for each of the lowest order jets (N = 0. . .3). For the 
sake of presentation we only consider the 2D case, but 
it must be stressed that the dimensionality does not 
pose a fundamental restriction to the concepts intro- 
duced. In fact, in much of the previous theory we 
refrained from specifying the dimension of space 
explicitly wherever this was irrelevant. 

APPLICATIONS 

A trivial O-jet example of a differential invariant is L, 
the local image intensity (in an implicitly given point P 
and on an implicitly given scale (7). A simple l-jet 
example is m, = 11 V L 11, the image gradient magni- 
tude. It is most pronounced on edges, where there is a 
relatively strong change of intensity values over a 
relatively short distance. Note that this is just the 
Canny edge detector’” (see also De Micheli et al.“‘). A 
simple 2-jet example is the familiar Laplacean L,, = 
AL. Figure 2 shows some differential invariants as they 
were calculated for noisy test images on several scales. 

We already pointed out that there are basically only 
two independent, pure second order ‘irreducibles’, 
which can be taken as L,; and L,,L,, (55). Any other 
pure second order property can be expressed as some 
combination of these two. From a geometrical point of 
view this is clear, since a second order image property is 
always related to its ‘deviation from flatness’. The local 
image intensity profile can deviate from its first order 
behaviour in two directions independently. There are 
two principal directions, corresponding to the coordi- 
nate axes of a system in which the mixed derivatives 
vanish (the (y, q)-gauge). The invariants L,,,, and L,,, 
can then be regarded as measures for the deviation of 
flatness in these principal directions. This way the 
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Figure 2. Some simple examples of invariants calculated for noisy test images on various scales. The additive gaussian 
noise imposed serves to illustrate the robustness of scale-space differentiation. (a) 1st order invariant L, for noisy 
straight edge: ‘edgeness’; (b) 2nd order invariant L,, Lt for noisy polygon (16 corners): ‘cornerness’; (c) 3rd order 
invariant L,,, LL - 3L,,L,,Li for noisy inf7exion: ‘bendedness’ 

Laplacean Lii = L,, + L,, turns out to be twice the 
mean deviation from flatness, whereas the square root 
of LiiLj; = L& + Liq is an absolute measure for the 
total deviation from flatness13. 

Another geometrical property closely related to this 
‘deviation from flatness’ property is the notion of light 
and dark ‘blobs’ in the image. These ‘blobs’ can be 
given an exact meaning by looking at the sign of the 
following invariant, called umbilicity (U): 

U= 
EijEklLik L~I %v&l 

Lr?wl Lnt?l = L& + L& 
(57) 

Note that we have normalized fJ such that 
- 1s U < + 1. Dark and light blobs (or ‘hills’ and 
‘dales’) now correspond to patches with equally signed 
principal deviations, i.e. with positive U, whereas the 
complementary, indifferent (‘saddle-like’) patches have 
negative U. The blobs are separated from the indif- 
ferent regions by the zero-crossings of U. We can single 
out the light blobs by looking at the sign of the 
Laplacean in addition: blobs with negative (positive) 
Laplacean are light (dark) blobs. 

386 

Figure 3 shows the light blobs of a NMR image on 
various scales. The complementary dark blobs and 
indifferent patches have been suppressed. 

The ordered light blob patches are reasonable 
primitives for a fixed-scale segmentation, and an across- 
scale linkage algorithm might be set up using these 
ordered fixed-scale segments to define linkage criteria 
for a more realistic, multiscale image segmentation. 

DISCUSSION AND CONCLUSIONS 

In this paper we have shown that the fundamental 
motivation for the construction of a scale-space is given 
by the physical nature of images and the universal law 
of scale invariance. Constraints arising from the lack of 
a priori geometrical knowledge naturally lead to the 
Gaussian kernel and its derivatives in D > 1 dimensions. 
The operations of scaling and differentiation are 
essentially intimately related. The study of invariants 
under a certain group of image transformations gives a 
robust mathematical basis for the study of image 
structure. 
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Figure 3. Patch classification based on 2-jet differential invariants calculated for an NMR image on various scales. (a) 
Scaled original image; (b) light blobs, i.e. patches with positive umbilicity and negative Laplacean; note that these 
binary invariants are by their very nature unstable in (nearly) flat regions, since a small perturbation 6L of L may 
easily cause them to flip. This is seen to occur in particular in the flat background; (c) as (b) but now the patches have 
been weighted by the zeroth order images from (a) (on corresponding scales) so as to obtain continuous invariants 
again. This trick preserves the patches and may be used to obtain a hierarchically labelled patch classification by 
assigning a priority number to each patch corresponding to the relative ranking of its average intensity value (this 
ranking is not shown here). The patch with the highest average intensity value will then be the ‘most pronounced blob’ 
at that scale, etc. It is clear that the unstable patches surrounding the skull will acquire a low priority label in this way 

The theory allows for the good understanding of 
many current available feature detection mechanisms, 
e.g. the Canny edge detector, Laplacean zero cros- 
sings, isophote curvature, etc., and puts these in the 
perspective of a broad class of differential invariants up 
to some order. The theory is applicable in many areas 
of computer vision. 

This theory may be further developed by a more 
systematic study of the irreducible invariant ‘building 
blocks’ up to any order, by inclusion of the temporal 
domain” , stereo, optic flow, and also by studying the 
‘deep structure’ in scale-space (i.e. the structure across 
scales), incorporating our local theory into a global 
model. A particularly important, but still unanswered 
question is also how to operationally gauge the local 
measurements and how to establish a (multilocal) 
connection. 

The resemblance between the complete family of 
scale-space kernels and mammalian receptive field 
profiles known from numerous neurophysiological data 
is encouraging: it suggests that our theory of differen- 
tial invariants in scale-space is a promising attempt 
towards a robust simulation of some of the successful 
geometric routines actually working in the human 
visual system. 

This theory may have an important impact on various 
topics in medical imaging, notably image segmentation, 
classification and pattern recognition. 

ACKNOWLEDGEMENTS 

This work was supported by the Dutch Ministry of 
Economic Affairs Grant [VS-3DM]-50249/89-01. 

a 

b 

~0110 no 6 julylaugust 1992 387 



REFERENCES 16 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Burt, P J, Hong, T H and Rosenfeld, A ‘Segmenta- 
tion and estimation of image region properties 
through cooperative hierarchical computation’, 
lEEE Trans. Cyst. Man. & Cybern., Vol 11 No 12 
(1981) pp 802-825 
Brunnstrom, K, Ekhmdh, 0 and Lindeberg, T 
‘On scale and resolution in the analysis of local 
image structure’, 1st Euro. Cunf. Cornput. Vision, 
Antibes, France (1990) pp 3-13 
Korn, A ‘Toward a symbolic representation of 
intensity changes in images’, IEEE Trans. PAMI, 
Vol 10 No 5 (1988) pp 610-625 
Lindeberg, T ‘Scale-space for discrete signals’, 
IEEE Trans. PAMZ, Vol 12 No 3 (1990) pp 234- 
245 
Babaud, J, Witkin, A P, Baudin, M and Duda, R 0 
‘Uniqueness of the gaussian kernel for scale-space 
filtering’, IEEE Trans. PAMZ, Vol 8 No 1 (1986) 
pp 26-33 
Mallat, S G ‘A theory for multiresolution signal 
decomposition: The wavelet representation’, 
IEEE Trans. PAMI, Vol 11 No 7 (1989) pp 674- 
694 
Koenderink, J J ‘The structure of images’, Biot. 
Cybern., Vol 50 (1984) pp 363-3’70 
Witkin, A ‘Scale space. filtering’, Proc. Znt. Joint 
Conf. on Artif. Intell., Karlsruhe, Germany (1983) 
pp 1019-1023 
Yuille, A L and Poggio, T A ‘Scaling theorems for 
zero-crossings’, IEEE Trans. PAMI, Vol 8 (1986) 
pp 15-25 
Poston, T and Steward, I Catastrophe Theory and 
its Applications, Pitman, London (1978) 
Blom, J, ter Haar Romeny, B M and Bel, A Spatial 
derivatives and the propagation of noise in Gaus- 
sian scale-space. Submitted, May 1991 
Jain, A K F~ndamentais of Digital Image Proces- 
sing, Prentice Hall, NJ (1989) 
Koenderink, J J and van Doorn, A J ‘Representa- 
tion of local geometry in the visual system’, Biol. 
Cybern., Vol 55 (1987) pp 367-375 
Fourier, J The Anulytical Theory of Heat, Dover 
Publications, New York (1955) 
Strutt, L R J W ‘The principal of similitude’, 
Nature. Vol XCV (March 1915) WD 66-68, 644 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

Olver, P J Applications of Lie Groups to Differen- 
tial Equations, Vol 107 of Graduate Texts in 
Mathematics, Springer-Verlag, Berlin (1986) pp 
218-221 
Hubel, D H and Wiesel, T N ‘Receptive fields, 
binocular interaction, and functional architecture 
in the cat’s visual cortex’, J. Physiology, Vol 160 
(1962) pp 106-154 
Young, R A ‘The gaussian derivative model 
for machine vision: visual cortex simulation’, 
Karlsruhe, Germany (1983) pp 1019-1023 
Young, R A ‘Simutation of human retinal function 
with the gaussian derivative model’, Proc. IEEE 
CVPR Ch2290-5, Miami, FL (1986) pp 564-569 
Koenderink, J J and van Doorn, A J ‘Receptive 
field families’, Biot. Cybern., Vol 63 (1990) pp 
291-298 
Danielsson, P-E and Seger, 0 ‘Rotation invariance 
in gradient and higher order derivative detectors’, 
Comput. VisioF~, Graph. & Image Process., Vol49 
(1990) pp 198-221 
Koenderink, J J ‘The brain a geometry engine’, 
Psychoi. Res, , Vol 52 (1990) pp 122-127 
Kay, D C Tensor Cu~c~~us, Schaum’s Outline 
Series, McGraw-Hill, New York (1988) 
Clark, J J ‘Authenticating edges produced by 
zero-crossing algorithms’, IEEE Trans. PAMZ, 
Vol 11 (1989) pp 43-57 
Spivak, M A Comprehensive Introduction to Dif- 
ferential Geometry (vol. I-V), Publish or Perish 
Inc., Berkeley, CA (1970) 
Marc, D C and Hildreth, E C ‘Theory of edge 
detection’, Proc. Roy. Sot. London B, Vol 207 
(1980) pp 187-217 
Torre, V and Poggio, T A ‘On edge detection’, 
IEEE Trans. CAMS, Vol 8 No 2 (1986) pp 347- 
163 
Kanatani, K Group-Theoretical Methods in Image 
Understanding, Vol 20 of Series in Information 
Sciences, Springer-Verlag, Berlin (1990) 
Canny, J ‘A computationat approach to edge 
detection’, IEEE Trans. PAMI, Vol 8 No 6 (1987) 
pp 679-698 
De Micheli, E, Caprile, B, Ottone~lo, P and Torre, 
V ‘Localization and noise in edge detection’, IEEE 
Trans. PAMZ, Vol 10 No 11 (1989) pp 1106-1117 
Koenderink, J J ‘Scale-time’, Biol. Cybern., Vol 
58 (1988) pp 159-162 

388 image and vision computing 


